
Inflectra White Paper Series: Automation

What Is Graphic User
Interface Testing?

4 Top Things to Look for When Choosing a
GUI Tool

1.	 An authoring framework that allows you to write tests, make
changes, find issues and be able to deploy the tests on all the
environments you need to test. Depending on the preference and
skill level of your testers, choose scriptless or script-based tools.

2.	 A tool that is well supported by the manufacturer and is keeping up
to date with new web browsers, operating systems and technologies
that you will need to test in the future.

3.	 An object abstraction layer that allows test analysts to write the
tests in the way most natural for them and that lets automation
engineers to create objects that point to physical items in the
application that will be robust when re-sorting a grid or adding data
to the system.

4.	 Support for data-driven testing since one of the big benefits of
automation is the ability to run the same test thousands of times
with different sets of data.

Why Choose Rapise for GUI Testing?

Rapise® provides powerful and easy to use automated testing. When
you need to test web, mobile or desktop applications or test your
APIs and web services, Rapise makes it easy. Rapise is ideal for to-
day’s agile software projects.

•	 Web, Mobile & Desktop Testing in One Tool - Rapise comes out of
the box with support for testing Desktop, Mobile and Web Appli-
cations. It allows the same test scripts to be executed in multiple
browsers unchanged and supports most GUI frameworks

•	 Learn and Go Testing™ - Rapise’s Learn and Go testing is much
more efficient than traditional record & playback. Objects are ed-
ited during the learning process vs. at the end. Rapise significantly
reduces testing time and gets your application to market faster

•	 Script or Scriptless Testing – Your Choice - Rapise includes both
an easy to use scriptless test creation language that can be used
by domain experts and a full JavaScript IDE for programmers who
want the full power of a test script language.

Visit us at www.inflectra.com for a free trial
Or get in touch with us: sales@inflectra.com, 1-866-572-5878 or +1 202-558-6885 (international)

Copyright 2006-2017, Inflectra Corporation

As many users, projects, tests,
releases, items, API calls as you
want. All pricing is based on
concurrent users.

Our one goal is to help you
succeed. We care deeply about
giving you the best quality service
and support you’ve ever had.

Flexible options to make your
life easier. Use on desktop or
mobile; your servers or our cloud,
sensible add-ons, fairly priced.

Inflectra: Software Built For You

What Is Graphic User Interface Testing?
Graphic User Interface (GUI) Testing is the process of ensur-
ing proper functionality of the graphical user interface for
a specific application. This involves making sure it behaves
in accordance with its requirements and works as expected
across the range of supported platforms and devices.

Why Is GUI Testing Important?
Modern computer systems are generally designed using the
‘layered architecture approach’, which means that the core
functionality of the system is contained within the “business
logic” layer as a series of discrete but connected business
components. They are responsible for taking information
from the various user interfaces, performing calculations and
transactions on the database layer, and then presenting the
results back to the user interface.

Testing of the GUI allows testing functionality from a us-
er’s perspective. Other types of testing would miss a user
interface failure, so GUI testing is an important part of the
testing toolset.

What Types of GUI Testing Exist?
There are two main types of GUI testing available: Analog
Recording; and Object-Based Recording.

Analog Recording
This is often what people associate with GUI testing. Analog
recording captures specific mouse clicks, keyboard presses
and other user actions and then simply stores them in a file
for playback. For example, it might record that a user left-
clicked at position X = 500 pixels, Y = 400 pixels or typed
the word “Search” in a box.

The benefits of analog recording:

•	 It works with virtually all applications regardless of the
technology or platform used

•	 It is quick to write tests

•	 As long as the GUI is stable and you can guarantee the
screen resolution and window position, it can be a good
way to test older applications.

The major drawbacks to analog testing:

replacement API to MSAA. It allows testing tools to
connect to and perform operations on objects in the
Windows GUI

•	 Java Reflection - for applications running in a Java VM
that use either AWT or Swing GUI libraries, testing tools
need to connect to the running Java VM and use the
reflection API to understand and test the GUI

•	 .NET Reflection - for applications running in the .NET
CLR using 100% managed code, testing tools can con-
nect to the CLR and use the reflection API to get more
precise information than via MSAA or UIAutomation

•	 Selenium WebDriver - The WebDriver API is available
on most browsers to give programmatic access to send
commands to the browser and inspect its Document
Object Model (DOM). It does not, however, let you record
user actions

•	 Web Browser Plugins - Most (but not all) web browsers
support a plug-in architecture that lets testing tools
interact with the loaded web page, inspect the browser
DOM, but unlike WebDriver, also record user interactions

•	 Apple XCUITest – This is the current testing API provid-
ed by Apple for iOS devices. It was introduced in Xcode
7 and can record user events

•	 Android UIautomator – This is the current testing API
used to test Android applications. It is available on the
most recent versions of the Android API and is used by
most modern mobile testing tools.

2. Be Realistic About What to Automate
In theory, you could automate 100% of your manual tests
and replace them with automated GUI tests. However, that is
not always a good idea! Automated tests take longer to write
than manual test since they have to be very specific to each
object on the page.

If you need to choose which tests to automate, start with
the 20% of test cases used most often. These tests will have
many hours spent on them: every day, every release, every
build. They are also likely those that have the most impact
on customer satisfaction. Automating these test cases will
reduce overall test time by the greatest factor, freeing the
team for other tasks.

3. Avoid the Perfection Trap
Sometimes when automating an application, you will meet
a special UI control that is not handled by the testing tool
that you are using (or maybe is not handled by any test-
ing tool that you have tried). The solution is to be creative,
if you can use analog recording for that one control, then
maybe that is the best solution. Or you may need to use a
combination of techniques to simulate the user action, using
special keystrokes to avoid the button in question.

•	 Tests are sensitive to changes in the screen res-
olution, object position, the size of windows, and
scrollbars.

•	 Tests are not intelligent; they don’t look for specific
objects so you change the UI in any way (e.g. change
a button to a hyperlink), the tests may need be re-
written. Analog tests are therefore considered “brittle”

•	 Human validation is essential. When analog tests
perform an action it receives very limited feedback:
the testing tool can only click at a coordinate or send
a keypress and can not understand if the application
worked correctly.

Object-Based Recording
With object-based recording, the testing tool connects
programmatically to the application being tested. It “sees”
each of the user interface components (a button,
a text box, etc.) as separate entities and can
perform operations (click, enter
text) and read the state (is it
enabled, what is the current
value) reliably, regardless of
where that object is on the
screen.

The benefits of object-based
learning:

•	 Test are more robust and
do not rely on UI objects
being in a certain po-
sition on the screen
or being in the top-
most window, etc.

•	 The test will give
immediate feedback when
it fails

•	 Tests are less “brittle” and
require less rework as the appli-
cation changes. This is especially
important for a system under active development and
UX changes.

The drawbacks to object-based learning:

•	 The testing tool needs to have specific support for
each of the technologies being used. For example, if
you have a web page that contains a Java applet, you
need a testing tool that understands this technology

•	 For some technologies (e.g. Flex, Flash) “instrumenta-
tion“ must be added to the code so that testing tools
can “see” UI objects. If you don’t have access to the
applications’s source code, it’s not possible to test it

•	 Writing tests takes more skill than simply clicking and
pointing: a tester may need to use Spy and inspec-

tion tools to navigate the object hierarchy and to
interact with the right UI elements.

The Challenges with GUI Testing
Regardless of the approach taken, there are some general
challenges with GUI testing:

•	 Repeatability – Unlike code libraries and APIs which
are normally designed to be fixed, user interfaces
tend to change significantly over time. So, when
testing a user interface large parts of the test script
may need to refactored for it to work correctly with
the updated version

•	 Technology Support – Applications may be written
using a variety of technologies (e.g. Java or .NET)
and control libraries (Java AWT vs. Java SWT). Not all
libraries are as easy to test and specific testing tools

may work better for some libraries than others

•	 Stability of Objects – When developers
write an application, their choices can

determine how easy an application’s
GUI is to test. For instance, it is

much harder to test an appli-
cation where objects have a
different ID value every time a
window is opened

•	 Instrumentation – In
some cases, testing requires
developers adding special
code (called instrumentation)
or including a specific library.
If you don’t have access to
the application source code
in such cases, testing op-
tions are limited.

What Are the Best
Practices for GUI Testing?

1. Upfront Technology Assessment
Before selecting a tool, it is generally recommended to
perform an upfront assessment of the technology, UI
controls, and widgets the application uses. Often there
are some non-standard UI controls and elements that
testing tools may struggle to interact with.

Different technologies in the application may require
different testing libraries. For example:

•	 Microsoft Active Accessibility (MSAA) - This Microsoft
API was originally developed to enable screen-read-
ers and other assistive technologies. It was adopted
by testing tools as a reliable way to see GUI objects

•	 Microsoft UIAutomation - This is the Microsoft’s

Which Should I Use?

The best practices are to use Object-Based
recording that is more robust and reliable where
possible and then use Analog recording to “fill in
the gaps” where nothing else works.

